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ABSTRACT

A simple sufficiency condition is given for an abstract family of
acceptors (abbreviated AFA) to define an abstract family of lan-
guages (abbreviated AFL) which is closed under reversal. This
condition i{s satisfied by all of the well-known AFA which define
reversal-closed AFL. A partial converse is given for AFL which
asre closed under both reversal and intersectionwith linear context-

free languages.
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*
ON THE CLOSURE OF AFL UNDER REVERSAL

INTRODUCTION

In [5] the notion of an "abstract family of languages' (abbreviated AFL)
was introduced as a model for many of the different families of languages of
interest in automata and formal language theory. The notion of an "abstract
family of acceptors" (abbreviated AFA) was then introduced as a model of the
families of one-way nondeterministic acceptors. It was shown that a family
of languages is accepted by an AFA if and only if it is an AFL closed under
arbitrary homomorphism, and a family of languages is accepted by the ''quasi-
real-time'" acceptors of an AFA if and only if it is an AFL containing the empty
word. Thus the study of AFL and the study of AFA are closely related. It is
therefore reasonable to impose properties on AFL and seek the corresponding
properties on AFA. 1In the present note we study the property of reversal in
an AFL. Specifically, we present a simple sufficiency condition on an AFA so
that the associated AFL is closed under reversal. This condition is satisfied
by all of the well-known AFA which define reversal-closed AFL. A partial con-

verse is given for reversal-closed AFL which are closed under intersection with

linear context-free languages.

*Research sponsored in part by the Air Force Cambridge Research Laboratories,
Office of Aerospace Research, USAF, Under contract F1962870C0023, the Air
Force Office of Scientific Research, Office of Aerospace Research, USAF, under
AFOSR Grant No. AF-AFOSR-1203-6TA, and by the National Science Foundation,

Grant No. GJLU5h.
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SECTION 1. PRELIMINARIES

In this section we recall some of the basic concepts involving families
of languages and families of acceptors. We anrsume the reader is familiar with
some of the elementary notions of sets of words such as concatenation, homo-

morphism, regular set, etc. All such undefined terms are in [5].

Definition. A family of languages is an ordeved pair (I,£), or £ when I s

understood, where
(1) Z 1is an infinite set of symbols,
(2) &£ is a family of sets of words over L,

»
(3) For each L in & there is a finite set £, ek such that L € L, and

(4) L # ¢ for some L in §£.

Henceforth, £ will always denote a given infinite set and I subscripted a
finite subset of L. Also, £, with or without a subscript, will denote a family of
languages (over ).

The special families of languages with which we shall be concerned are

next defined.

Definition. An AFL (acronymn for "abstract family of languages") is a family
£ of languages closed under the operations of union, concatenation, +,1 e-free
homomorphism, inverse homomorphism, and intersection with regular sets. An

AFL closed under every homomorphism is called a full AFL.

1Here, "' {5 the Kleene closure operation without the empty word e¢. '"#' is the

Kleene closure operation with the empty word.
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The notion of an AFL serves as a model for many of the important families
of languages studied in automata and formal language theory. In particular,
the regular sets, the context-free languages, the one-way nondeterministic stack
languages, and the context-sensitive languages, each form an AFL, the first three

also being full AFL.

The model for an abstract family of acceptors is rather complicated. It

depends upon the following notion:
Definition. An AFA-schems is a L-tuple (I,1,f,g), with the following properties:

(1) T and 1 are abstract sets, with [ and I nonempty.
(2) £ is a function from " x1tnto I v {43.
*
(3) g is a function from r’ into the finite subsets of ' such that

gle) = {c}, and ¢ is in g(y) 1f and only if ) = c.

(k) For each § in g(l"*),2 there is an clement 1, in I satisfying

14
f(7,1g) = 5 for all ; such that g()) contains £.

(9) For each u in I, there exists a finite set nu € T with the following

» *

property: If I} €T, 7 is in T, and £(y,u) # 9, then £(y,u) is in (l‘1 ] nu) 4
that is, for each ) in r*, each symbol occurring in f(y,u) either occurs in y

or is in rh.

Intuitively, an AFA-schema is a type of auxiliary storage, with g the "read"
function and f the '"write" function. Elements of [ are auxiliary storage symbols,

and elements of I are "instructions.”" Further details and examples are in (5].

2por each set A, g(A) = . ngd 2 g(7).



10 November 1969 6 T™M~T738/056/00

Using the notion of an AFA-~schema, we have the following concept:

Definition. An AFA (acronymn for "abstract family of one-way, nondeterministic

acceptors") is a pair (Q,8), or O when Q is understood, with the following

properties:

(1) Q 1is a 6-tuple (K,Z,T,I,£,8), where
(a) (r,1,£,8) is an AFA-schema, and

(b) Kand = are infinite abstract sets.

(2) & is the family of all elements (called acceptors) D = (xl,zl,a,qo,r),
where
(a) K, and Z, are finite subsets of K and Z resp., F is a subset of
Ky and q, is in Kl’ and
*
(b) 8 is a funccion from K, X (21 U {e}) x 8(I'" ) into the finite

subsets of Kl X 1 such that

G, = {e/3(q,8,€) # ¢ for some q and a}
is finite.

Thus an AFA is an AFA-schema together with all acceptors having the AFA-
schema type of storage. Each acceptor has a finite number of states and input
symbols. 9, is the "start" state, and F is the set of "accepting' states. 3 is
the "move" function. In order that an acceptor be finitely specified, GD is

required to be finite.
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An acceptor moves from configuration to configuration as follows:

Notation. Given an acceptor D = (KI,ZI,G,qO,F), let |~ (or }3 when D is to
be emphasized) be the relation on K1 X Z: X f* defined as follows. For a in
Z, U {e}, (p,aw,y) |- (p’w,7 ) if there exist € and u such that € is in g(7),
(p’,u) is in 3(p,a,E), and £f(y,u) = y’. Let Ff be the reflexive, transitive

extension of |—.

We now define "acceptance' in an acceptor. Intuitively, a word w is
accepted if the acceptor, starting from the start state with empty storage,

reads all of w and ends in an accepting state with empty storage.

Definition. Let (Q,9) be an AFA and let D = (KI,Z 6,qo,F) be in 4. Let L(D),

1)
called the set (or language) accepted by D, be the set of words

{w in Zt | (po,w,e) Fr (p,e,€) for some p in F}.
Let £(%) = {L(D) | D in g].
It is shown in [5] that for each family £ of languages, £ is a full AFL
if and only if there exists an AFA @ such that £ = £(A).

We need one other concept about acceptors.

Definition. Let { be an AFA and k =2 0., Let n; be the set of all D in g such
] t
that (p1’€’71) = oo (pm’€’7m) imples m < k. Each D in - & 1is said to

be a quasi-real-time acceptor and each L in st(ﬂ) = kgo s(n;) a quasi-real-

time language.

It is shown in [5] that for each family of languages £, £ is an AFL con-

taining {¢} if and only if there exists an AFA § such that £ = £t(n).
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SECTION 2. RESULTS

We are interested in the following operation:

R R
Definition. Let ¢ = ¢ and (.1""k) =a .8, each 8 inZ ,k 21. If

X c}::,

is called reversal.

let X . [x‘/x in X}. The operation which maps x into x* and X into X

We shall be concerned with the study of AFL £ closed under reversal, 1i.e.,
if L is in £, then l.R is in £. It was noted in [5] that the smallest AFL £
containing the language L = {a"b"/o <m< n} is not closed under reversal since
£ does not contain L:. A more "natural" example is the family .r.“ of one-way,
nondeterministic, nonerasing stack-acceptor languages.3 It was proved in [12]

2
= (a" b™/n 2 1}, but £, does not cortain g

that .\:N contains L X

1

While an AFL £ need not be closed under reversal, it does contain a unique,
maximal AFL closed under reversal, namely £ N :R = {L/L and ? in £}, where
£ = 1L a0y

The remainder of this paper concerns a condition on an AFA § which implies
that .ct(n) and £(4) are cloesed under reversal. This condition is defined as

follows:

Definition. Let ((),A) be an AFA, with(Q=(K,Z,T,1,f,8). The AFA is said to be
* *
reversible if there exists a one to one function h from I' into ' satisfying

the following conditions:

(1) gh(y) = hg(y) for all y in [

(2) h(e) =¢.

3See [6] for the definition of these languages.
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(3) For each u in I and € in g(r*), there cxists v e in I so that for
’

each 7 and 7', § in g(7), £(7,u) = 7’ 1f and only 1if f(h(7').vu,g) = h(7).

This condition is related to, but different from, a condition stated in
(9].

In all practical applications we know, h may be taken to be the identity

*
function on T .

Example. Let K, £, and T be infinite sets. Let I = {c, Ez/Z in T} U T, where
E, is a new symbol for each Z in I'. Let (N,8) be the AFA where f(y,c) =7,
f(yZ,Ez) =y, £f(y,2) = yZ, g(c) = {c}, and g(y2) = {2} for each y in F* and
Z in I'. Then § is reversible, with h the identity function, and is the AFA

of pushdown acceptors.

In a similar manner, it is easy to check that all of the following families
are reversible AiA: nondeterministic finite-state acceptors with e¢-moves; non-
deterministic one-counters [3]; nondeterministic one-way stack acceptors [6];
list-storage acceptors [7]:; and nested stack acceptors [1]. On the other hand,
in view of Theorem 2.1 below and because the family of one-way, non-
determ’ nistic, nonerasing, stack-acceptor languages are not closed under reversal,
the AFA of one-way nondeterministic, nonerasing stack acceptors are not
reversible. Speaking informally, there is no way to reverse the addition of

a symbol to the stack.

The following result is our sufficiency condition for an AFL to be closed

under reversal.
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Theorem 2.1. £(8) and .i:c(c) are both closed under reversal for each reversible

AFA &.

Proof. Let L be in £(&). Then thereexists an acceptor D, = (xl,zl,al,pl,pl)

in £ such that L = L(D). Without loss of generality, we may assume that F, = {d}

and 61(d,a,§) = ¢ for each a and £, For each (u,§) in I X g(l"*), let 4

H £" [sf(s'l(g),u)] ne, = {g'/al(q,a,g’) # ¢ for some q, a, and
’ 1
£',8’ in g(£(7,u)), € in g(y) for some y}.

Since GD is finite, l-l.u € is finite (possibly empty). Let 02 be the acceptor
1 ]

(Ky)Z,,8,,(d,¢), {(py,€)}), where K, = K X GD1 and &, is defined as follows:
If (p,u) is in 61(q,8,§), then let ((q,h(g))yvu,g) be in 52((p,h(§')), a,

h(€’)) for all €/ in H _.
u,§
Since K, and G, are both finite, K, is finite and D
1 D,
fact that L(D2) = (L(')l))R and the fact that D

t
k

> is an acceptor. The

1 is in ﬂ; for some k if and only

if D, is in 8 for some k is an immediate consequence of the following.

Let k 21 and w,,...,w, be in I Y {e}. Let qs 9, be in K and

k

¥*
70,000’7]( in r‘ . Then

(1) (qo,wk.. .wl,yo) [—D—l(ql,wk_l.. 'w1’71) }5—1 S e ID—I(qk,e,yk), with 8(7k) 9,

if and only if

(2) ((qk’h(gk))’wl'"wk’h(7k)) h;;: ove Fﬁ;‘((qoih(go)))e)h(7o)) for

some go in 8(70); ey gk in 8(7k)'

Y1(g) = {y in T'/€ 1s in g(»)).
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To see that (1) implies (2), we use induction on k. The case for k = 1
is trivial and is subsumed in the case k = m + 1 given below. Suppose (1)
implies (2) for k < m. Consider k =m + 1. Suppose (1) holds for k =m + 1.

Then we have

(3) (qo’wm_’_l)yo) '_Dl_ (q1)€)71) and

(u') (ql’wm"'w1)71) "—.: tee I'_DT (qm+1)€.!7m+1)}
with g(yl) £ ¢ and g(7m+1) 9. From (4) and induction,

(5) ((agey, WEqey)ds Wy o) |—§; ((ay,h(€;))se,h(7,)),
with £ in 8(71), 1<1is<m+1l, From (3), there exist g, in g(yo) and

(ql,ul) in Gl(qo,wm+1,§°) such that f(7°,u1) =7, Then g is in Hul’go

By construction of 02 we have

(6) ((qo:h(go))’vu 4 ) is in 62((q1,h(§1)),wm+1,h(§1))-

11
By definition of reversibility,

(7) f("*'71)’vu1,§o) = h(y,).
Since € is in g(71),
(8) h(g,) is in hg(y,) = gh(y,).
From (6), (7), and (8), we fave
(9) ((qp,h(8.)),w .i50(7,)) I—D;((qo,h(%o)),e,h(%))-

Combining (5) and (9), we get (2) for k =m + 1.

Using induction we now show that (2) implies (1). Suppose k = 1. Then
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(10) ((ql’h(gl))’ "1) h(71)) l_D;((qo’h(go))’ €, h(7°))
for some go' in g(yo) and some §, in 3(71). Then
(11) ((qo’h(go)))v) is in 62((q1)h(§1)))w1:-§-) and

(12) £(h(7,),v) = h(y,)

o
for some E in gh(yl) and some v in I. By construction of 62, £ = h(gl).
Since h is one to one, go,yo,gl, and 7, are uniquely defined from h(go),
h(y_.), h(g,), and h(7,). By (11) and the definition of 8., v = v for
o 1 1 2 u,§o
some u in I satisfying (3) in the definition of reversibility such that
(13) (ql;u) is in 61(q°)w1)go)'
From (12) and from (3) in the definition of reversibility,
(14) £(7 ,u) = 7;-
From (13), (14), go in 8(70)) and §1 in 8(71)) we have
(15) (q,5%y57,) ITI- (a5€,7;), with g(7;) # 4,
1oeo, (1) holds.

Assume (2) implies (1) for 1 < k < m and suppose k = m + 1. Then

(16) Gy (E))s ¥p> M7yg)) F-((agy b)) 7)) and

(17) ((ah(E))s Waee¥yys (7)) ";'2 ((ay,h(E,)), €, h(z,))

for some § in g(yo),...,gm_‘_1 in 3(7m+1)' By induction, we get

(18) (qgvys7y) I-D—l(qm+1,€,7m+1) and

*
(19) (qo’wm+1.°'w2’7o) ,_DI' (qm)€:7m))
*
with g(y_..) # ¢ . Hence (q v . .cow,,7 ) F’T (9417697 4p)» With

8(r,4;) # ¢, L.e., (1) holds, thereby completing the proof.
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From the theorem, we immediately obtain another proof of the known fact
that each of the following AFL is closed under reversal: the regular sets;
the nondeterministic one-counter languages; the nondeterministic one-way
(quasi-real-time) stack-acceptor languages; the list-storage acceptor lan-

guages; and the (quasi-real-time) nested stack-acceptor languages.

While Theorem 2.1 is not difficult to prove, it should be useful in
eliminating machine proofs of closure under reversal for new families of

languages defined by AFA.

We had hoped to be able to characterize AFL closed under reversal by AFA.
Unfortunately, we have not been successful in that we can only give a partial

converse to Theorem 2.1.

Theorem 2.2, Let &£ be a (full) AFL which contains {c¢}, is closed under reversal,
and is closed under intersection with linear context-free languagea.5 Then

there exists an AFA % which is reversible such that ¢ = £t(0) (£ = £(8)).

Proof. Let K be an infinite set. For each element a in I let a’, a”, and

a” be new symbols. For each language L in £ let e, and ZL be new symbols.

L
Let 1 be a new symbol. For each a ard b in &, let E(a',b') and E(aﬁbM) be

new symbols. Let £’ = {a’/a inZ}, =¥ = {a”/a in £}, and Z” = {a“/a in L],

5A linear context-free language is a language generated by a context-free

grammar in which all products are of the form € - w or € - W W, where € and v
are variables and w, Wy and w, are words over the terminal-letter alphabet.

See [4].
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Since £ is infinite, wv¢ may assume that L X Z, L' xZ’ Z* xZ”, and

Z” x " are pairwise disjoint subsets of Z. Llet
Fre(ExZ)yE'xE’) y(E” xZ*) y (" x£~), and
Is(ZxZ)y(E'" xZ") vy {‘L’:L/L in £} U [I,B(.,’b,),z(.,.,b.)/a,b in Z}.

Let g be the function on " defined by g(e) = {¢} and g (72) = (2] for all y in
*
r# and Z in I'. Let f be the function from r* XIdinto T U [¢ ] defined as
* *
follows (for each y in ', x in (Z x 8)*, x'in (Z°' x Z')*, x" in (Z" x £"),

*
x" in (2" xZ") , k21, Mand N in £, and a, a, b, b in Z):

i

(1) £(2,1) = .
(2) f£(x,(a,b)) = x(a,b).

(3) f((.l’bl)"'(.k’bk)’en) - (ai,bl')...(a':,bl:) if a ...ab ...b) 18 in M.

(h) f( x'(.')b'))g(‘c’bl)) -x’,
(5) £(x",(a%,b")) = x*(a”,b").

(6) f((ni’,b{)...(ai,b;),zn) -(ai’,b‘i’)...(a:,b:) if bl...bkak...a1 is in N,

(7) f(x"'(a"',b“),l-:(.,,,b“)) . g7,
(8) £ = ¢ 4n all other instances.

Let ((,9) be the AFA for which Q0 = (K,Z,T,1,f,g8). Let h be the isomorphism on
I‘* generated by h((a,b)) = (a*,b”), h((a“,b")) = (a’,b’), h((a’,b’)) = (a”,b"),
and h((a”,b")) =(a,b) for each a and b in L. It is easily verified that p is
reversible since (1) and (1), (2) and (7), (3) and (6), and (4) and (5) are
"reverses" of each other. Note that (3) and (6) are reverses of one another
if and only 1f N = H‘R Thus the fact that £ is closed under reversal is

implicitly used.
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To complete the proof it suffices to show that £ = .i:t(s). (An analogous
proof shows £ = £(%0).) Consider £ < .c"(n). To prove this containment, it suffices

to show that

(9) Each L in £ consisting only of even-length words is in .ct(n).

*

L’
2,% 2.\ %

L, =LnN (Z‘.L) andL = LN Z‘.L(ZL) + Since £ is an AFL, L , the even-length

[For let L be any language in £ and L € & Then L = L, UL, where

words in L, is in §£ and Lo’ the odd-length words, is in £. For each a in ZL,
*
= = U
let Loa Lo n aZL. Then Lo a L’__’a and each Loa is in £, Since £ is an AFL
containing {c}, each set a\Loa = {w/aw in Loa] is in £ [5]. Furthermore, each

a.\LOa contains only even-length words. By (9), L, and each a\Loa is in .ct(n).

t
Thus L = L, U g a(a\Loa) is in the AFL £ (&).]

Hence let L in £ be a set containing only even-length words. Let P, and
Py be two symbols in K. Llet F = {po,pl} if ¢ is in L and F = {pl] if ¢ is

L is defined by

aL(po,a,g) = {(po,(a,b))/b in Z‘.L} for each a in I, and § in (Z:L X Z‘.L) U {e},

T
not in L. Let D, be the acceptor ({po,pl},ZL,aL,po,FL), where 3

6L(po,e,§) = {(pl,eL)} for each § in I, X Z , and 6L(p1,b,(a',b ) =
{(pl,E(a,’b,))} for each (a,b) in %, X E . Obviously L(DL) = L, so that L is
in £(4).

We now show that St(ﬂ) € £. The proof of this containment is more compli-
cated and uses the hypothesis about the closure of £ under intersection with
linear context-free languages. Llet D = (KI,ZO,G,pO,F) be an acceptor in 4.

We may assume that if (q,u) is in 8(p,x,E) and € = (a’,b’), then u is either

1 or E(a' b')" [Otherwise, the acceptor blocks.] Write (p,w,e) — (q,y,7)
)

if either
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(10) (p,w,e) = (q,¥,7), or
(11) (pyw,e) = (q,y,7), or
(12) There exist n 2 1, Pysvees oo Yyseees Yoo Wyseeo, Vo such that
(a) (pyw,e) = (Pys¥ys7p)s
(b) (pi’wi’7i) — (pi+1’wi+1’7i+1) for each 1 such that 1 <1 <n,

(c) (pn’wn’7n) — (a,y,7), and
(d) 7, Fe forall 1, 1 <1 <n.

For each p and q in K,, let ofp,q) be a distinct symbol in & - Z, and

1)
qu = {w in z;/(p,w,e) F— (q,¢,¢)}.

Let Z, = {odp,q)/p,q in Kl} and let R be the regular set

R = {o(p_sP)/p in F} U {0/(1:0,pil)“(pil,piz)---Of(pi »P)/n 2 1,p; in K, p in F}
n

*
Let T, be the substitution 6 on I, defined by 'rl(o:(p,q)) = qu for each ofp,q).

1 1
Clearly L(D) = TI(R)' Since each AFL containing {c¢} is closed under substitu-
tion into regular sets by languages in £ [5], it suffices to show that each

L is in £.
Pq

6
Let %, , let 7(a)

be a language in £. Let T be the function on Z*{ defined by T(c) = {c} and

T(xl...xk) - 'r(xl)...'r(xk) for each k 2 1, x, in ) Then T is called a

substitution (on Z’{) For each X ¢ Z*{ let T(X) = - i‘llJ X t(x). Then 7(X) is

called a substitution into X by languages of £.

be a finite set and £ a family of languages. For each a in &
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Let L = {u/(p,u) 1n 3(q,a,Z) for some q, a,f} and g = 1N
[eH,ZH/H in £]}. For each p and q in K and each e in Cb, let L;q be the set
*
of all words v in Zo with the following property: There exist n 2 2 and
appropriate (Pi’u1’71)’ 1 €4 <n, such that (pl,wl,yl) = .. (pn,wn,yn),
W, M =c, P = p, P, = % N -7n-c, "k $ ¢ for all k, 1< k< n, and

(pjﬂ,e) is in a(pj,wj,g(-;j)), with f(7j,e) " 7441 for some j. Intuitively,

L;q is the set of input words which cause D to leave state p with empty storage

and go into state q with empty storage, without emptying the storage sometime
in the "interior" of the computation. Moreover, the instruction e, and no
other instruction in tb’ is used, and exactly once, during the sequence of
moves. [In fact, disregarding the instances when the instruction 1 occurs, the
instruction e occurs at the "midpoint'" of the computation.] Now a word w is

in qu if and only if either (1) w=c and p = q, or (ii) w is in £, U {c¢} and
(p,w,e) b~ (q,c,c) by an application of the instruction 1, or (iii) w causes

D to leave state p with empty storage and, in at least two moves, go into

state q with empty storage, with all intermediate storages empty. Since (iii)

can occur only if an instruction in ED 1s used in the computation, we have

1) cM b eM

(13) L=, i L" Uz 4 L
Pq cMi.n&D eM:I.neD

where T is a finite subset of Zo U {c}. Since CD is finite, (13) is a finite

uT,

union. Since an AFL is closed under union and T is in £, it suffices to show
e e

that each L M and each L ™ 1s in L.
Pq Pq

We now show that each L M

is in £, an analogous argument holding for

0]

Lp::. Let M, p, and q be given. let
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a ’ ¢ ’ 4
L, {(al,bl)...(nk,bk)(ak,bk)...(al,bl)/k 21, each (‘1"’1) in Z_ x Zo}.

Then I.1 is a linear context-free language over I since it is generated by the

grammar vhose set of productions is

o = ("b) 0(.';1")’ 4= (‘)b)(. ’)b')/(‘)b) in 80 X zo]'

*
Let T, be the substitution on I defined by 'ra(l) = {(a,b),(b’,a’)/b in Z‘.o].
Each set 1’2(!) is finite and does not contain c. 'rherefou'ra(u) is in £ [5].

Let LM - L1 n -ra(M). Since £ is closed under intersection with linear context-

free languages, L. N 1'2(}1) is in £. It is easily seen that

1

L, * [(.l’bl)”'(.k’bk)(.l;’bl:)"'(.{’bl')/k 2 1, each (.1’b1)

inZ xZ,,a...ab...b in M}.

For cach {instruction u # 1 in ID’ let lu be a new symbol. For each s, t, a,
£, and u such that (t,u) is in 3(s,s,f), let (s,a,f,t,u) be a new symbol in Z
if u #1 and (s,a,g,t,lv) be a new symbol in L for each 1 if u = 1. LetZ,
be the set of all the 5-tuples. Clearly }.‘.2 is finite. Let W be the set of

*
all words in 22 of the form

(pl’.l’gl’p2’ul)(P2"2’52’p3’u2)'"(pm’.m’gm’pMI’um)’
where m 2 2, Py "Pr Py "0 & =€, §1 #ec for1<1i<m u is of the form
E(a',b')’ and for each j, 1 < j<m; (1) uy = (a,b) implies Ui " (c,d), L

or luj, (11) uJ = e, implies Uin - E(a',b') or uy, " leM, (111) uy = E(a',b')

i = E A or - =
mplies Uin (c’,d’) uj+1 IE(a ',b')’ and (iv) uy lv implies Ui is



10 November 1969 19 ™-738/056/00

given by (1), (ii), or (1i1), according as v is of the form (a,b), ey OF

B(. ' b)° Then W is the set of all computations, in coded form, in which D
leaves state p with empty storage and goes to state q, without emptying the
storage in the interior of the computation, using the instruction ey exactly
once, and using no other instruction in 8D. Note that the computation in W need
not end with empty storage. The role of 1u is to indicate the use of Ins-

truction 1 while remembering the last non-l1 instruction. Clearly W is a regular

set.

e
To complete the proof that Lp:: is in £, we shall construct homomorphisms

h, and h e-limited on | h3'(L,) NW, such that

1 o) with h

1
e
(14) Lpf: ~ hl[h;(:.n) nwi.

It is known [5] that if £ is an AFL containing {c} and h1 is an e-limited
homomorphism on U, U in £, then hl(U) is in £. Since an AFL is closed under

inverse homomorphism and intersection with regular sets, it will follow that

e
*
Lp:: is in £. Hence let h, be the homomorphism on Z, generated by hl((s,a,y,t,u))= a

*
for each element (s,a,y,t,u) in 22. Let h2 be the homomorphism on 22 generated
by ha((s:a:'):t:(c:d)))' (c,d) for each (s,a,7,t,(c,d)) in Za.v he((sya:(cl,vd’)),
t’E(c',d')»' (¢’,d’) for each (s,a,(c’,d’),t,E(c,,d,))

in = and hz(y) = ¢ for all other elements y in Z,e It is a straightforward

2 2
matter to verify that (14) holds. Note that each word in h;l(LM) NWis a

Ta homomorphism h is ¢~limited on a language U if there exists k 2 0 such that

for all w in U, if w = xyz and h(y) = ¢, then the length of y is less than k.
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computation in coded form which empties the storage. If D is in ﬂ; for some

k 2 0, then obviously h, is e-limited on W and thus on h;l(LM) N W. Hence

1
the theorem.

Consider the hypothesis to Theorem 2.2 for £ an AFL. Most families of
languages defined by "natural' families of two-way acceptors contain the linear
context-free languages and are closed under intersection and reversal. (Excep-
tions exist, such as the family of nondeterministic finite-state acceptors with
e-input moves.) It was shown in [8) that the family £ of languages defined by
a family of two-way acceptors becomes an AFL, %(£), when closed under c-free
homomorphism. If £ is closed under reversal and intersection with linear
context-free languages, then the same is true of %(£). [For suppose h is an
e-free homomorphism, L is in £, and L° is linear context-free. Then h(L)R -
h'(LR), where h’ is the homomorphism generated by h'(a) = (h(a))R for each a.
Since h-l(Lo) is also linear, h(L) N L, =h(L N h-l(Lo)) is in %(&£).] Thus
%(8) satisfies the hypotheses of Theorem 2.2 for families &£ of languages
defined by most families of two-way acceptors. Also, families of languages
defined by most 'mnatural' families of one-way nondeterministic quasi-real-time

multistcrag: tape acceptors satisfy the hypotheses of Theorem 2.2 [10].

Conside.: the hyoptheses to Theorem 2.2 for £ a full AFL. Note that £ is

*
closed under 1ntersection.8 [For let L1 and L2 be in £, with L1 < 21 and

*
L2 c Zl. let c be a new symbol in Z. Since L3 = Lch:cL2 is in £

aﬁe are indebted to Dr. Ronald Book for this observation.
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and L, {wew cy/w and y in 81} is linear context-free, I.5 L3 n L,

R R *
{wew cy/w in L),y in L2] is in £. Since L = {yow cw/w and y in 21} is linear
context-free, 1.5 N L = {wcchw/w in L, g L2] is in £. From the fact that £
is a full AFL, it then follows that L1 n L2 is in £.] Also, £ contains
[anbn/n > 1}. Now the smallest full AFL containing {a"b"/n 2 1} and closed
under intersection is the recursively enumerable sets [11]. Thus any full AFL
satisfying the hypotheses of Theorem 2.2 contains the recursively enumerable

gets.

Finally, let Zl € Z and for each a in 21 let a’ be a new symbol in £, with
21’ = {a‘/a in Zl]. Let L(ZI,Z{) be the linear context-free language
{al...akal:...ai/k 21, a, in Z,}. An examination of the proof of Theorem 2.2

reveals that it is only necessary to assume that
(*) 1N L(zl,zl') is in £ for each L in £ and each L(zl,zl’).

For the full AFL case, however, it is easily seen that (*) implies that § is

closed under intersection with arbitrary linear context-free languages. For

let Ll be an arbitrary linear context-free language. It is noted in [2] that
there exists a regular set U and homomorphisms h1 and h2 such that

*
L = {hl(w) h2(wR)/w in U}. Let U SR Then

*
- '4 [
L h3(L(Zl,Zl) n Uzl ),

where h3 is the homomorphism on (Zl U Fl')* generated by h3(a) = hl(a) and

h3(a’) = h2(a) for each a in £ Hence

10
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LN L =LNh(LE,Z]) NUE*)

= b [ (L) ML,z N
s h3[(h;1(L) n ulzl'*) n Lz, O,

1

which is in .
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